Latex-less opium poppy: cause for less latex and reduced peduncle strength.
نویسندگان
چکیده
A genotype 'Sujata' developed earlier at CSIR-CIMAP from its parent 'Sampada' is considered to be the latex-less variety of Papaver somniferum. These two genotypes are contrasting in terms of latex and stem strength. Earlier we have carried out microarray analysis to identify differentially expressing genes from the capsules of the two genotypes. In this study, the peduncles of the two genotypes were compared for the anatomy revealing less number of laticifers in the cortex and vascular bundles. One of the important cell wall-related genes (for laccase) from the microarray analysis showing significantly higher expression in 'Sampada' capsule was taken up for further characterization in the peduncle here. It was functionally characterized through transient overexpression and RNAi suppression in 'Sujata' and 'Sampada'. The increase in acid insoluble lignin and total lignin in overexpressed tissue of 'Sujata', and comparable decrease in suppressed tissue of 'Sampada', along with corresponding increase and decrease in the transcript abundance of laccase confirm the involvement of laccase in lignin biosynthesis. Negligible transcript in phloem compared to the xylem tissue localized its expression in xylem tissue. This demonstrates the involvement of P. somniferum laccase in lignin biosynthesis of xylem, providing strength to the peduncle/stem and preventing lodging.
منابع مشابه
Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy.
Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturb...
متن کاملCharacterization of Three O-Methyltransferases Involved in Noscapine Biosynthesis in Opium Poppy1[W]
Noscapine is a benzylisoquinoline alkaloid produced in opium poppy (Papaver somniferum) and other members of the Papaveraceae. It has been used as a cough suppressant and more recently was shown to possess anticancer activity. However, the biosynthesis of noscapine in opium poppy has not been established. A proposed pathway leading from (S)-reticuline to noscapine includes (S)scoulerine, (S)-ca...
متن کاملA tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy.
Opium poppy produces a diverse array of pharmaceutical alkaloids, including the narcotic analgesics morphine and codeine. The benzylisoquinoline alkaloids of opium poppy accumulate in the cytoplasm, or latex, of specialized laticifers that accompany vascular tissues throughout the plant. However, immunofluorescence labeling using affinity-purified antibodies showed that three key enzymes, (S)-N...
متن کاملCharacterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy.
Noscapine is a benzylisoquinoline alkaloid produced in opium poppy (Papaver somniferum) and other members of the Papaveraceae. It has been used as a cough suppressant and more recently was shown to possess anticancer activity. However, the biosynthesis of noscapine in opium poppy has not been established. A proposed pathway leading from (S)-reticuline to noscapine includes (S)-scoulerine, (S)-c...
متن کاملOpium intake in infants and children in Baluchistan.
Opium (powdered poppy Capsules) mixed with sugars and other plant products is a popular home made remedy for colic, cough and tonics for infants and children in Baluchistan. Over a period of 7 years (1977.1983) 28 children between the ages of I month to 5 years were admitted in Civil Hospital Quetta due to opium poisoning accounting for 0.16% of all paediatric admissions during the same period....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiologia plantarum
دوره 150 3 شماره
صفحات -
تاریخ انتشار 2014